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Travelling reaction—diffusion waves are considered in a simplified model of the
Belousov—Zhabotinskii reaction, described mathematically by the two-variable
Oregonator. A one-dimensional problem consisting of two regions is considered.
Region 1 (effectively the boundary at z’ =0) acts as a reservoir with a fixed
concentration of the autocatalytic species (hypobromous acid), and provides
constant input of this species into region II. Region II (the reaction zone 0 <z’ <
00) allows diffusion of the autocatalyst while the catalytic species Ce'V is assumed
immobilized on a supporting matrix.

The form of the ensuing travelling wavefront and the behaviour in the region
behind the front as it propagates into the region of increasing «’, is considered. By
examining the large time behaviour it is shown that the propagating front travels
with its minimum possible wave speed. Both single travelling waves and periodic
wave trains are observed.
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230 J. A. Leach, J. H. Merkin and S. K. Scott

1. Introduction

Travelling waves of chemical or other activity are common features of spatially
distributed systems. In many of these systems, the medium through which the
reaction wave propagates is said to be ‘excitable’. Excitable media are characterized
by a stable state that is relatively insensitive to small perturbations but when
subjected to a stimulus above some threshold responds through a single large
excursion. In the Belousov—Zhabotinskii (BZ) system for example, this can be
revealed by a transient colour change in the reaction mixture. In unstirred BZ
systems, the travelling waves can be followed by this transient red-blue colour
change. If the system is subjected to some periodic stimulus, periodic wave trains of
excitation and recovery develop (Tyson & Keener 1988; Murray 1989).

In this paper, we consider a reaction—diffusion problem based on a simplified model
for the Belousov—Zhabotinskii chemistry. The kinetic scheme we use to represent the
BZ reaction is based on a reduced form of the Oregonator (Field & Noyes 1973 ; Field
& Troy 1979; Tyson 1979; Tyson & Fife 1980; Crowley & Field 1984). This has five
reaction steps involving only the three intermediates hypobromous acid (HBrO,),
the bromide ion (Br~), and the oxidized form of the metal-ion catalyst (Ce!V) and is
given by

A+Y->X+P, rate = k, AY, (
X+Y-—2P, rate = k, XY, (
A+X—+>2X+2Z, rate=k,AX, (

2X +A+P, rate = k, X?, (
B+Z-1fY, rate = k, BZ, (le

where the k; are the rate constants and where we assume that the concentrations of
species A and B are constant. Here X, Y and Z denote the concentrations of HBrO,
(the autocatalyst), Br~ and Ce'V respectively. P denotes the concentration of HOBr;
this species is a product and plays no active part in the overall reaction.

Further, we assume (as in Tyson (1979) and Tyson & Fife (1980)) that the
concentration of the bromide ion (Br~) adjusts rapidly to the instantaneous
composition of the reacting mixture. This then implies, from (1), that

Y = Lfky BZ/ (ky A + k, X) 2)

and the mechanism can be described fully in terms of the concentrations of the
species represented by X and Z.

The experimental configuration of particular interest here is that reported in a
sequence of recent papers by Showalter and co-workers (Maselko et al. 1989 ; Maselko
& Showalter 1989, 1991; Winston et al. 1991) namely one in which the metal-ion
catalyst is immobilized on some supporting matrix. The catalyst-loaded matrix may
take the form of ion-exchange beads, with wave activity confined to the surface of
a single bead or occurring across a surface formed by many beads in contact, or an
ion-exchange membrane. The matrix is immersed in a solution of the remaining BZ
reagents at suitable concentrations. In the case of the (thin) membrane, waves may
develop on either side but these do not propagate completely independently of each
other. Instead there is a coupling through the membrane. Because of the high net
negative charge within the matrix, anionic species such as BrO; or Br~ do not
penetrate to any significant extent, so coupling presumably arises by diffusion of
neutral species such as the autocatalyst HBrO,. The strength of the coupling (i.e. the

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

e

R
\
\\ \\
P

/

\
{

A

P\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

THE ROYAL A
£\

SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

The initiation and propagation of travelling waves 231

effective diffusion coefficient) varies with, and hence can be controlled by, the loading
of the membrane with the metal-ion: the higher the degree of loading the lower the
effective diffusion coefficient. By varying the experimental constraints, various
‘patterns’, many without obvious precedent in ‘homogeneous’ reaction—diffusion
situations, have been observed, including apparent phase-locking between waves of
different inherent frequencies creating a regular ‘mosaic’ across both surfaces.
Spatiotemporal structures deriving from coupled waves on membrane surfaces may
have wider significance, perhaps in biological systems, or provide new ways of
coupling different reactions or reactors. At present, the theoretical understanding of
the possible processes is also not well developed for coupled waves.

To develop a theoretical model, we first seek a robust relevant model that produces
a periodic wavetrain on one surface, preferably without a periodic stimulus at its
centre. Here we concentrate on an essentially one-dimensional problem without
coupling, with two regions I (effectively the boundary at «” = 0) and II (the reaction
zone 0 <2’ < o0). Region I acts as a reservoir with a fixed concentration of the
autocatalytic species X. This provides input to region II. In region II, the
autocatalyst can diffuse but species Z is immobile. We find that the imposition of a
constant concentration of X at 2’ = 0 can cause the formation of a suitable periodic
wavetrain if the parameters of the model correspond to an oscillatory or an excitable
state of the corresponding well-stirred system. In this paper, we examine the basic
form of the wavefront, its velocity and the solution ‘left behind’ as it propagates into
the region of increasing «’.

2. Governing equations and dimensionless variables

The equations governing the diffusion and reaction of species X and Z on the
membrane are, on using the kinetic scheme derived from (1) and (2), for planar
geometry,

oX 02X (lc3A—lc2X

——— o —_ 1 — 2
a7 =Degt (i A+k2X)sz0BZ+k5AX 2%, X2, (3a)

0%/ = 2k, AX —k,BZ, (3b)

where 2" and ¢ are the space and time variables respectively.

Equations (3) also requires some initial and boundary conditions. We assume that
the concentrations of the bromide ion and the oxidized form of the metal catalyst are
initially zero everywhere within the membrane, and that at time ¢ = 0, the edge of
the membrane, (x" = 0) is placed in contact with the reservoir of the autocatalyst
HBrO,, which is then kept at a constant concentration X, throughout. This leads to
the initial and boundary conditions

X=X, on =0,) ,
>0, (4a)
X0 as ' — o0,
and X=Z=0 at ‘=0 (0<z <) (4b)
Equations (3) are made non-dimensional by writing
u=2k,X/k;A, v= ks ky BZ (5a)
OV IR
t=hkoBt', x=(k,A/D,)} . (5b)

Phil. Trans. R. Soc. Lond. A (1993)
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232 J. A. Leach, J. H. Merkin and S. K. Scott
On using (5), equations (3) and initial and boundary conditions (4) become
du  %*u (q—u)
2= 1—
e ax2+“( u)+fo G0’ (6a)
/ot = u—wv, (6b)
subject to
U= U, on x=0,
t=0, (7a)
u—>0, v>0 as x—> 00,
u=v=0 in O0<x<oo, t=0. (7b)

The dimensionless parameters, ¢, ¢ and u, are defined by
q=2ksky/koky, €=kyB/kyA, wu,=2k,X,/ks;A. (8)

These, together with the stoichiometric factor f, specify the system. The parameter
g is usually taken to be small (typically ¢ = 0.0008) due to the magnitude of the
rate constant k,. The parameter ¢ is considered to be within the range 0 < ¢ < 1. The
value of the parameter u, the non-dimensionalized concentration of the autocatalyst
on the boundary can take all values but here is taken to be of order unity.
Throughout we shall be using the stoichiometric factor f as the bifurcation
parameter.

As a necessary first step in attempting to understand the behaviour of the
reaction—diffusion system given by equations (6, 7), as detailed description of the
corresponding ‘well-stirred’ or kinetic system is required. This we now review.

3. The kinetic system

The basic kinetics for the two-variable Oregonator model are given by equations
(6) with the diffusion term put to zero. This spatially homogeneous system has two,
physically acceptable, stationary states (u, v) given by

v, =0, (9a)
s = v =3{1—(f+Q)+VI(f+q—1)*+4q(f+ 1)]}. (90)

It is important to note that the parameter ¢ does not occur in either stationary state,
also stationary state (9a) corresponds to the initial conditions for our reaction—
diffusion system.

It is straightforward to show that stationary state (9a) is a saddle point for all
values of the parameters, whereas stationary state (95) admits Hopf bifurcations, the
conditions for which are given parametrically by

-1 fa
e=1 2u8(1+(q+us)2) (10)

(the associated limit cycle produced by the Hopf bifurcation being unstable).

Suppose that the parameter ¢ is held fixed, then a curve of Hopf bifurcation points
can be plotted in the ¢, f parameter plane. However, for these to exist in the positive
quadrant ¢, f > 0, the parameter ¢ must satisfy the relation

9 <qsx (94 ~0.075). (11)
Figure 1a shows the ¢, f parameter plane for a value of the parameter ¢ = 0.0008. The
Phil. Trans. R. Soc. Lond. A (1993)
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The initiation and propagation of travelling waves 233
(a) (b)
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Figure 1. ¢, f parameter plane, depicting the regions within which stationary state (9b) is a stable
node (sN), stable focus (s¥), unstable node (UN) or a unstable focus (UF). (@) ¢ = 0.0008, (b) ¢ =
0.007.

regions in which the stationary state (9b) is a stable node (sN), stable focus (SF),
unstable focus (UF) and unstable node (UN) are also shown. The curve separating the
regions of stable and unstable focal behaviour corresponds to the curve of Hopf
bifurcations. This curve separates the regions in which stationary state (9b) is stable
and unstable. As ¢ approaches g, the region of oscillatory behaviour (the region in
which stationary state (9b) is unstable) in the positive quadrant shrinks until at
¢ = ¢, this region of oscillations disappears altogether, leaving stationary state (9b)
stable for all positive values of the parameters ¢ and f. This is illustrated in figure 156
by a plot of the ¢, f parameter plane for ¢ = 0.07.

In general, the parameter ¢ will be small; here we shall be taking it fixed at the
value ¢ = 0.0008 for all the results presented below. We complete this section by
considering the form of the stationary state (9b) and Hopf bifurcation curve (10) in
(e,f) parameter space for ¢ <€ 1.

An examination of (9b) for ¢ < 1 shows that there are three separate cases to be
considered, namely f < 1, f > 1 and |1 —f]| small, of O(¢?). For the first two cases, we
find after a little calculation, that

us=1—-f)+2f/1—=f)g+..., for f<1, (12a)
us=((f+1)/(f—1))g+..., for f>1, (12b)

A consideration of the higher order terms in expansions (12) shows that these
breakdown when |1 —f| is of O(¢?). To examine this case further we put f = 1+ Ag?,
where A4 is of O(1) in this region. This leads to

34
VATS) 1]q+... (13)
for |1 —f] < 1. Note that (13) agrees with (12a) as 4 -— 00 and with (12b) as 4 - 0.
Expressions (12a,b) and (13) gives a complete description of the steady state ug for
small g. Starting from small values of f, u, falls rapidly as f is increased and becomes
small as f— 1. In the neighbourhood of f = 1, u, is small, O(¢?), as given by (13). As fis
increased still further, u, decreases even more to O(q), as given by (125b). This is
illustrated in figure 2 where we give a plot of ug against f for ¢ = 0.0008.
Expressions (12) and (13) can be used in (10) to obtain expressions for the Hopf

us %W(A2+8>—A]q%+§[

Phil. Trans. R. Soc. Lond. A (1993)
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1.0
s
0.5
0 1 2

f
Figure 2. A graph of u, against f for ¢ = 0.0008.
bifurcation curve for ¢ € 1. We find, again after a little calculation, that these are
given by

8=(2f—1)—(T(¥}—)q+..., for f<1, (14a)

8=2f+241f_f2+...,

e = 1—[\/(A2+8)—A][1+

for f>1, (14b)

¢t (14¢)

4
(\/(A2+8)—A)2]
for |1 —f| small, with again f = 1+Ag?. Note that (14¢) agrees with (14a) as 4 -— o0
and with (14b) as A - 0c0. The expansions (14) compare very well with the almost
triangular Hopf bifurcation curve depicted in figure 1a, with the maximum range of
Hopf bifurcation (on ¢ = 0) given by

14+3¢+... <f<14+4/240(q). (15)

Finally we note that the maximum on the Hopf bifurcation curve occurs when
f=1, and taking f =1 (i.e. 4 = 0) we obtain

Uy = /2 g+ ..., (16a)

e=1-3/2¢+3q+.... (16b)

Equation (16b) shows that ¢ = 0 when ¢ = 2/25, giving an approximate value for

¢« = 0.08, which compares well with the numerically determined value given in (11).

We are now in a position to discuss the reaction—diffusion initial-value problem
given by equations (6) and (7).

4. The initial-value problem
(@) Small time solution

The initial spread of u into the membrane (x > 0) is by diffusion. This suggests
introducing the variable 7 = z/#, and with u = u(y,t), v = v(,t), equations (6)

become 5 \
Ju nou\ O*u
b il AT 7
s(tat 2617> an2+t (u,v), (17a)
v g

Phil. Trans. R. Soc. Lond. A (1993)
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The initiation and propagation of travelling waves 235
subject to
U= U, on 5=0,
t=0. (18)
u—=0, v=>0 as 5— 0,

Here F(u,v) represents the reaction terms on the right-hand side of equation (6a).
The form of equations (17) suggests looking for a solution by expanding

u(y,t) = Ug(n) +tUy () + ..., (19a)
v(n,t) = Vo) +tVim)+.... (1956)
On substituting expansions (19) into equations (17) and equating terms in like

powers of ¢, we obtain equations for the U, and V, (: = 0, 1,2, ...) which can be solved
in turn so as to satisfy boundary conditions (18). We find that

U, '\/8 «© 2
Uy(n) = O—J e e /4 ds, 20a
o =2 | (20a)
Vo(n) =0, (200)
and, at O(¢), that
U ( )=_u0_ _1_ we—as2/4ds_e~en2/4 U1 lep?) (21a)
1\7 Vi\ve 2:2:2€7°) |»
U
2 00
V,(n) = ui/‘gg{(g%+ 1>J ees/a ds+77e“”2/4} (21b)

1

(where (21a) is expressed in terms of a confluent hypergeometric function (Slater
1960)).
We can use this expansion to calculate the initial influx of reactant X into the

membrane. This is given, in dimensionless terms, by — (0u/0x),_,, and using (20) and
(21) we find that
ou Ug V€ 1
—|= = T+H{——2t+... 22
(ax)M VT ( +(8 2) i ) #2)

(22) shows that the effect of the reaction is first felt at O(¢) in this expansion.

(b) Bounds on the solution
Consider first the case ¢ < 1. It is straightforward to show that the set
S ={(u,v):0<u<1+u, 0<v<14u (23)

satisfies the conditions of theorem 5.17 of Britton (1986) and hence is an invariant
rectangle for the system. Consequently, since our solution starts in this rectangle at
t = 0, it remains bounded (and in &) for ¢ > 0. A further consequence of this is (by
theorem 5.18 in Britton (1986), that the initial-boundary value problem, given by (6)
and (7), has a unique global solution.

Furthermore, if we restrict u, so that u, < 1, we can show that the set

S ={(u,v)0<u<l, 0<v<1} (24)
is also an invariant rectangle for our system. Hence, in this case, we have the bound,
O<uxt) <1, 0<wvxt)<1 (25)
forall t >0, 0<2x< 00.
Phil. Trans. R. Soc. Lond. A (1993)
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Also, we can show that for the, perhaps unrealistic, case when ¢ > 1 and u, < 1 the
corresponding invariant rectangle is

%={wv):0<u<q, 0<v<g) (26)

Finally in this section, we note that equation (6b) can be integrated, subject to
initial condition (7a), to give v(x,¢) in terms of u(x,¢) as

t
v(x, t) = e“f w(x, s) e ds (27a)
0
(27a) shows that on z =0
2(0,2) = uy(1—e™") 27h)

and hence v(0,t) > u, as > 0o0. Also, with 0 < u(z,t) < 1, the bound, 0 < v(z,t) < 1,
implied in ¥ is recovered.

We now go on to consider the solution for u, small. This will show that the initial
configuration of the system, v = v = 0 is unstable to small perturbations, growing
exponentially quickly away from, initially small, values of w and ». Then, invoking
the boundedness (24) or (26) and uniqueness of the solution we can conjecture that,
for large time, reaction—diffusion travelling waves will be set up.

(¢) Solution for small w,

To obtain a solution of equations (6) valid for u, < 1 we set,

u=u,U, v=wu,V. (28)
Then, on assuming that ¢ > w,, we obtain the linearized system
Ty, (294)
avjot=U—V, (290)
at leading order, subject to the initial and boundary conditions, derived from (6),
U=1 on x=0,
U-0, V-0, as xz— oo,} £29, (30a)
U=V=0 at t=0, 0<x< 0. (300)

The initial-value problem given by (29) and (30) can be solved using Laplace
transforms. We find that U(x,¢) is then calculated from the integral

L [rried <p—p>@+p>f )
Ulx,t) = — il Y ® S o\ VA (LI o V2 Ptdp, 31
(,8) =5~ po_iwpeXp( [ P+l 7 xy/€ e dp (3la)
where the constants p, and p, are defined in terms of ¢ and f by

V[ 4e)?+4ef |+ (1—¢) V[ +e)? +4ef |—(1—¢)

o 2¢ > 2¢

with it being straightfolrward to show that p, > 1 and p, > 1/¢. For the function

((p—po) (p+p1)/(p+1)) in integral (31a) branch cuts are taken from p = p, to
p =—1 and from p = —p, to p—>— 00 along the real axis, with the argument taken

Phil. Trams. R. Soc. Lond. A (1993)
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The initiation and propagation of travelling waves 237

to be zero for p > p, on the positive real axis. The contour integral in (31a) can be
transformed into an integral on the positive real axis to give

epot 0 e——Rcosﬁ
Uz, t) = - L W (p, cos (rt— R sin 0) +rsin (rt — R sin 6)) dr, (310)
where R = —M‘_[((pfﬁ‘pl) (p0+1)+72)2+(p1—1)2r2]%
VIpy+1)*+7%]
and 0=%n—arctan[ (P =U)r ],
(Po+1) (po+p1) +7*

with the principal value taken for the inverse tangent.
The main interest in (31) is the behaviour of U(,t) for ¢t large. This can be done
most efficiently directly from the Laplace transform (31a) in which we first put § =

(p—p,) ¢ to get

Ul 1) =9p—°tr1fw ———I——exp(—&((s/t)+p°+pl)ix\/8)esd& (324)

2ni )i ((S/)+2y) ((S/t) +po+ 1) 82

Now, putting 5 = z/# and letting ¢ > o0 in (32a) we obtain
ePof ¢! 10 1(Pot Py : S

U(x,t) 2nip—0exp ﬁiw( S (m \/877 e®dS (32b)

for  of O(1). Then, by a standard Laplace transform (Watson 1981),
Ve (po+p1>%77 ( (pot+p )8772)
Uz, t) ~ 0B Zeplexp | — L 32¢
O~ e\ per1) 17 P T 4+ 32¢)

as t— oo with # of O(1).

We note that (32¢) remains uniform for 5 large but becomes non-uniform as
70, in particular when 7 is of O(te™?+), i.e. when x is of O(tfe~?o!). Further, we note
that when z is of O(1), U is of O(ePo"), growing exponentially quickly, while when x >
t > 1, U remains exponentially small.

(d) Numerical solutions

The initial-value problem given by equations (6) and (7) was solved numerically
using essentially the same method described in detail in Merkin & Needham (1989)
and used for the numerical integration of a range of related reaction—diffusion
problems by Merkin et al. (1989), Merkin & Needham (1990, 1991) and Gray et al.
(1990).

The numerical scheme is a modified Crank—Nicolson method, in which the
derivatives in the ¢-direction are replaced by forward differences and all of the terms
averaged over the step form ¢ to t+At. This results in two coupled ordinary
differential equations in @ which are then differenced using central differences. The
resulting sets of nonlinear algebraic equations are solved by Newton-Raphson
iteration, a process which was found to converge very quickly.

The integration from ¢ to ¢+ At was performed in first one and then two steps and
the difference between the two solutions monitored. If this was less than some preset
tolerance (usually set at 5 x 107%) the integration was deemed to have achieved the
required accuracy. Otherwise, the time step was halved and the process repeated.
This procedure was found necessary to maintain accuracy in the reaction—diffusion

Phil. Trans. R. Soc. Lond. A (1993)


http://rsta.royalsocietypublishing.org/

THE ROYAL
SOCIETY 4

OF

-l ()
52
=0
=
-

oU
m<
o(h
=%
L
o=

THE ROYAL A
SOCIETY /)

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

238 J. A. Leach, J. H. Merkin and S. K. Scott

front as it propagated forwards. The actual time steps used varied and depended
critically on the propagation speed of the front, the faster the speed, the smaller the
time step needed. We found that using the above criterion, Af ranged from 0.02 to
0.0025.

The position of the reaction—diffusion front was taken as the point where du/0x
took its maximum value. This was used to calculate the wave speed (using central
differences in time). The position of the wave front for the case when a wave train was
set up (as described below), as well as the positions of the successive maxima in this
wave train, were also calculated from the positions of the maxima in » and v. The
speed of propagation of all these maxima could also then be calculated. We are
considering a spatially continuous excitable medium, in which the interaction of
neighbouring elements through diffusion can produce travelling waves of excitation.
Diffusion allows the wave front to propagate forwards through the medium by
exciting the medium ahead of the front and hence allowing further reaction. The
propagating wave front converts the perturbed unstable stationary state (9a) to the
stable stationary state (9b) as it travels through the medium or, if this stationary
state is also unstable, a succession of waves travel through the medium (wave train).

In the numerical results presented below, the parameter ¢ was fixed at a value of
0.0008, which is sufficiently small to allow both single travelling waves and wave
trains to be observed. The parameter u, was also fixed at a value of u, = 1.0, this
value being chosen arbitrarily, since it has already been seen, from the small u,
solution, that there is no minimum value of u, below which travelling waves are not
initiated. The size of the parameter u, controls the time scale over which travelling
waves are first seen (Merkin & Needham 1989, 1991). Since the growth rate is linear
in u for small » was can deduce that this timescale will depend only weakly on u,,
and can estimate it to be of O(log 1/u,) for u, small.

Travelling waves were observed to exist for all values of the parameters ¢ and f
chosen. Single travelling waves and wave trains were initiated in the heterogeneous
medium for values of the parameters ¢ and f for which the well-stirred system is non-
oscillatory and oscillatory respectively.

We present wave profiles for two values of the parameter ¢, namely 0.3 and 0.05.
The former of these values was chosen to exemplify the features of the wave profiles,
which the latter, although more physically realistic, requires much larger amounts of
computational effort to generate the wave profiles due to the much increased wave
speed. Values of the parameter f were chosen to give the required types of wave
profile for the values of ¢ above. First consider single travelling waves for the
physically realistic value of the parameter ¢, namely 0.05. Figure 3a, b (for f = 0.005
and f = 0.4 respectively) illustrates the development of single travelling reaction—
diffusion fronts, converting the unstable stationary state (9a) to the stable
stationary state (9b4), here u, = v, = 0.9950 (for f = 0.005) and u, = v, = 0.6011 (for
f=0.4). Here we see an initial sharp increase in % (the non-dimensional concentration
of hypobromous acid) followed, for f= 0.4, by a more gradual decrease to its
stationary state value. This decrease occurs due to the adjustment of the bromide ion
concentration via equation (2). Essentially hypobromous acid is consumed as it acts
as a reducing agent for the bromate to produce bromide ions. This reduction
continues until stationary state concentrations are obtained. In both cases the
increase in v (the dimensionless concentration of Ce'V) is monotone and in the case
of f = 0.005 requires a larger spatial distance to reach the stable state at the rear of
the wave.
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Figure 3. Concentration profiles of v and v, showing the travelling wave (a) f = 0.005, u, = 1, (b)
f=04,u,=1,(c)f=3.0,u,=1, (d)f= 3.0, uy = 10, with ¢ = 0.05 and ¢ = 0.0008, and (¢) f = 3.0,

%y = 10, ¢ = 0.3 and ¢ = 0.0008.

The cases shown in figure 3a, b are for values of f less than the lower Hopf
bifurcation point (see figure 1a). The situation for values of f above the upper Hopf
bifurcation point is more complicated. This is illustrated in figure 3¢, d for f = 3.0.
In figure 3¢ (for u, = 1.0 and ¢ =0.05) we can see that there is a propagating
reaction—diffusion front, pulse-like in % and ramp-like in v. This has clearly detached
itself from the behaviour near the boundary and is moving forwards with constant
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Figure 4. Concentration profiles of v and v, showing a wavetrain of travelling waves, for
e=0.05, f=1.0 and ¢ = 0.0008.

velocity. However, unlike the previous cases, the values of u and v at the rear of this
wave are not the steady state values v =v = u, (here u, = 0.0016), but now u
remains at the constant value u = ¢, while v decreases slowly. There is also a region
near the boundary where it appears that another pulse in « is about to be detached.
We examined this point a little more by taking u, = 10.0 (with the other parameters
at their previous values). The results are shown in figure 3d, where we can see that
a second pulse in % has now become completely detached from the boundary leaving
behind another region in which v = g. We conjecture that this process repeats itself
indefinitely. However, we are unable to confirm this within the computing resources
available to us, though computations done in a finite region using essentially the
same equations discussed here do show a regular train of propagating pulses in u
being detached from the boundary regions (Leach 1991).

This firing of regular pulses in » from the boundary when the stationary state u,
is stable requires small values of &. For ¢ = 0.3 (with the results shown in figure 3e¢)
the situation is essentially the same as for values of f less than the lower Hopf
bifurcation point, with v and v having their stable stationary state values u = v =
ug at the rear of the propagating reaction—diffusion front.

Next consider the wave trains: these can be observed at values of the parameters
¢ and f for which the stationary state (96) is unstable. We first consider the physically
realistic value of the parameter ¢, namely ¢ = 0.05. Figure 4 illustrates a wave front
propagating away from the boundary leaving behind an incipient wave train. Note
the very gradual ramp-like structure at the back of the wave in the profile for v, with
a sharp, pulse-like structure for u.

The computational time required to produce a fully developed wave train
consisting of a wave front followed by several waves behind it for ¢ = 0.05 was found
to be unacceptably large. To treat this phenomenon in more detail with the
expenditure of a more reasonable amount of computational effort, a larger value of
the parameter ¢ must be chosen. To do this we took ¢ = 0.3 and figure 5a—c displays
waves trains for f=0.75, 1.0 and 1.5 respectively. The wave profiles can be
considered to consist of three regions. First, there is the wave front in which » and
v are perturbed from their initially unreacted state. This is followed by the wave
train, in which waves are successively formed near the boundary and then adjust
their amplitude and velocity so as to develop a regular wave train behind the
reaction—diffusion front. Note that the waves just behind this front are travelling
with the same velocity as the front. For f=0.75 and 1.0 (figure 5a,b) the
reaction—diffusion front has a very similar appearance to the waves in the wave train.
However, this is not the case for f = 1.5 (figure 5¢) where the front has a much larger
amplitude than the waves in the wave train. The third region consists of a local
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Figure 5. Concentration profiles of » and v, showing a wavetrain of travelling waves for
e=0.3, ¢ =0.0008. (a) f=0.75, (b) f=1.0, (c) f=1.5.

region in which u diffuses into the medium from the boundary. Within this region
waves are fired, after a wave has been initiated the medium here is, at first, refractory
to the propagation of another wave of excitation. Gradually the system recovers its
excitability, ready for another wave to be fired, with this process then being
successively repeated.

There are two features of these wave trains that are worth noting. First, the fully
established wave profiles have the same appearance as the oscillatory response
curves for the well-stirred system (though now reversed in time). Secondly, the value
of u at the rear of each wave settles to the refractory branch v ~ ¢ (= 0.0008). This
is more clearly seen in figure 4 for the smaller value of e.

Finally, we considered the asymptotic propagation speed of these travelling
waves, i.e. the speed of the front calculated after a large number of time steps. This
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Table 1. 4Asymptotic wave speed c, as calculated from the numerical solution of the unitial value
problem (6) and (7)

q S 3 Co
0.0008 0.75 0.3 7.20
0.0008 1.0 0.3 7.02
0.0008 1.5 0.3 6.94
0.0008 0.005 0.05 40.3
0.0008 0.4 0.05 40.5
0.0008 3.0 0.05 40.7
0.008 04 0.05 40.5
0.08 04 0.05 40.5

was seen to depend very strongly on ¢ but only weakly on f, becoming very large as
¢ was decreased. Table 1 summarizes the results. One interesting feature of the
asymptotic wave speed is its apparent independence of the parameter ¢. This point
will be addressed in the next section.

5. Large time solution

Here we look for a solution of equations (6) valid for ¢ > 1, the main features of
which, as we have seen from the numerical solutions, are propagating wave fronts
and, for certain parameter values, propagating wave trains. These we now
concentrate on. We first introduce the travelling coordinate y = x—s(t), with
equation (6) then becoming

gl;+a%%g+u(l—u)+ﬂ;8;z; =8%%, (33a)
%g—;+u-v=%?, (330)
we look for a solution valid for ¢ > 1 by expanding,

w(y, t) = wuy(y) +t uy(y) + ..., (34a)
vy t) = vo(y) + o (y) + - (340)
ds/dt = cy+t7 e, +.... (34¢)

At leading order we obtain the equations for the travelling front, given by
g +&cq ug+ wug(1—ug) +fro(q —uo) /(4 +u) = 0, (350)
CoVo+uy—vy = 0. (35b)

Here primes denote differentiation with respect to the travelling coordinate y. These
equations are to be solved subject to the boundary conditions

Uy, V>0 as y— 0. (36)

The conditions to be satisfied by u, and v, at the rear of the wave, i.e. as y +—o00,
will be discussed below.
(@) Wave speed selection

The first aspect of the solution of equations (35) that we need to consider is the
mechanism by which the asymptotic wave speed c, is selected. We note that the
reaction rate in equations (35) is, for small concentrations, linear in w and ». Thus we
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Figure 6. A graph of g(A) plotted against A.

expect a structure similar to that found for the simple quadratic autocatalytic
schemes discussed by Merkin & Needham (1989, 1991), and Merkin et al. (1989) in
which the propagating front splits up into two regions. There is a region where both
reaction and diffusion are important, in this y is of O(1). Ahead of this is a weak
diffusive region, where y is of O(f5), and in this region the effect of diffusion is to
perturb slightly the (unstable) unreacted state « = v = 0, hence allowing the reaction
to proceed. It is then the ability of the reacting species to diffuse ahead of the wave
front that controls the propagation speed of this front. We note also that this
structure requires the expansion in inverse powers of ¢ given in (34). The way in
which it is the behaviour of the solution at the front of the reaction—diffusion
travelling wave, in relation to the initial data, that determines the propagation speed
is discussed in some detail by Billingham & Needham (1992).

We start the discussion by considering the form of » and v at the front of the
reaction—diffusion wave. Here both u, and v, are small with equations (35) becoming,
approximately,

U +&Co Uy + Uy +fvo = 0, (37a)
CoVy+ Uy — vy = 0, (37b)

subject to boundary condition (36). On eliminating v, from equations (37) we obtain
the third-order ordinary differential equation for u,, given by

d3u,  d%u,
Vap

. du, L _
(860-—1)-00@—(8 1)—uy(f+1)=0. (38)

On looking for a solution of equation (38) proportional to €'Y we obtain the
characteristic equation for A

g(A) = e A2+ (eci—1) A2 +co(1—e) A—(1+f) = 0. (39)

By inspection the cubic equation g(A) = 0 has one positive root, since the coefficient
of the final term is negative. The remaining two roots (if real) must be negative since
g’(0) = ¢y(1—¢) > 0, for ¢ < 1. Note that complex conjugate roots are not allowed, as
this would lead to negative values of «, (and v,) in violation (25). The function g(A)
is plotted against A for typical parameters in figure 6. The curves I, IT and III
correspond to the cases when the remaining two roots of g(A) are a complex conjugate
pair, equal negative roots and two non-equal negative roots respectively. The curves
I, IT and III are displayed for increasing values of the parameter c,, where 1
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Figure 7. A graph of wave speed ¢, plotted against (a) ¢ and (b) f for ¢ = 0.0008.
(i) e = 0.05, (ii) e = 0.1, (iii) ¢ = 0.3.

corresponds to the smallest value of ¢, and III to the largest value. Curve II
corresponds to the minimum allowable wave speed c¢f, where ¢, > ¢ (i.e. the
minimum value of ¢, which leads to a monotonically decaying solution in y).
Therefore, for a minimum wave speed we require the solution of

g(A) =0, g¢'(A)=0. (40)

Now, to match with the weak diffusive region ahead of this reaction—diffusion
region, we must choose the solution of equation (39) which corresponds to this
minimum wave speed, i.e. we must take ¢, = ¢{'. This is in line with previous work on
systems governed, in chemical terms, by quadratic autocatalysis, leading to the
much-studied Fisher-Kolmogorov equation (Fisher 1937; Kolmogorov et al. 1937).
For this problem there is a continuous spectrum of allowable wave speeds, as
ascertained from the reaction—diffusion front equations. However, the solution of the
full initial-value problem shows that the ensuing travelling wave propagates with
the minimum of these allowable speeds, (see, for example, Bramson 1983). It should
be pointed out though that this conclusion applies only when the initial data has
compact support, travelling waves with speeds greater than this minimum are found
for initial data which is more ‘spread out’ (Gazdag & Canosa 1974; Larson 1978).

The condition ¢g’(A) = 0 gives a quadratic equation in A

Beo A2+2(ec2—1) A+cy(1—¢) = 0. (41)
Equations (39) and (41) taken together form a pair of equations which enable the
minimum wave speed ¢, =c¢ and the negative eigenvalue A =—A; (A, >0),

corresponding to the equal roots case, to be found. Now on eliminating A from
equations (39) and (41) we obtain a cubic polynomial in ¢2, namely

eX((1+4¢)*+4ef) co 68(3 ) 1+f )+2(1—¢)%(2—¢))ch
6(1+f) (3—8)—2T(1+f)2+(1—8)2) Z—4(1+f) = 0. (42)

Note that this cubic and henoe the minimum wave speed c¢f is independent of the
parameter ¢. This was borne out by the numerical solutions described in the previous
section.

It is not possible to proceed further analytically, for general values of the
parameters for which equation (42) has to be solved numerically. Figure 7a, b shows
the minimum wave speed (as found from (42)) plotted against ¢ (for f = 1) and f (for
& =0.05,0.1 and 0.3) respectively. These figures show the strong dependence of ¢, on
&, with ¢, becoming large as ¢ 0, and the very weak dependence of ¢, on f (for a given
value ¢ there is only a 3.2 % change in ¢, from f = 0 to f = 3). However, we can obtain
asymptotic values of ¢, for small ¢ and for small and large f.
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For ¢ < 1, a consideration of equation (42) shows that ¢, is of O(¢7'), and after a
little calculation we find that

¢y = (1/8) 2+3ef+ &G f—3/)+ ) (43a)

as ¢—>0. The values of ¢, given by (43a) are in excellent agreement with those
obtained numerically from equation (42), and shown in figure 7a, for f=1. The
expansion (43a) being only about 20 % out even at ¢ = 1. The corresponding values
of A, are given by

L= 143fe+ (43b)

For f = 0, equation (42) can be solved exactly to give ¢, = 2/¢, with A; = 1. Then, on
expanding for small f, we find that

2 1
60=E+(2+3)f+“" (44a)
_ e(4+e) v
/\1—1+———-—2(2+8)2f+... (440)

as f—0. Note that the leading order terms for small ¢ and for small f are the same
and this explains the very weak dependence of ¢, on f as seen in figure 7b.

For f> 1 and ¢ of O(1), equation (42) suggests that c, is of O(f%), with further
calculation giving

o~ (2T/4ef fid . A ~ (463/3) i+ .
asf—> 0.

We now return to the solution of equation (38), where we now have ¢, and A
determined by (39) and (41), that

g ~ (Agy+By)e ™Y+ ... (46a)
as y— oo, for constants 4, and B,. The corresponding behaviour of v, is obtained
using equation (37b) and is given by

» N[ 4, co Ao+ (142409 By
’ (1+/\1co)y (142, ¢0)*

]e~w+ . (46b)

The equations at O(t™!) are

” ’ q_uo 2fq’l}0 ’
w] +ecyuy+ (1 —2uy) u, + ( )v— Uy = —EC; Uy, (47 a)
1 01 0 1 fq+u0 1 (q+u0)2 1 170
Co ¥+ Uy — v, = —¢, Uy, (47b)
subject to
u,—~0, v,-0 as y— 0. (47¢)

From equations (47) we require the behaviour of u, and », as y - co. We find, after
a little calculation, that

~|: Ayey Ao(f+ (1424, ¢0)%)
BT+ Ao+ /(T + A 0)
v~ [ Ay Ag(f+ (142, ¢h)%)

! 6(14 A ¢o) (14 A ¢)* + e f/ (14 2,¢))
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From (46) and (48) we then have, as y— o0,
_ A, Ao(f+ (T4 A, ¢0)%) ]} _
~<(4 B+t L1790 10 4. MY 49
e o e

together with a similar form for ». Equation (49) shows that there is a weak non-
uniformity developing in this expansion when y is of O(#), with the term of O(t™') in
the expansion then becoming comparable with the leading order term (though both
are exponentially small). This suggests that there will be a region ahead of the
reaction—diffusion front in which diffusion plays the dominant role and which is to
be matched to the solution given by (49) for y large. In this region, we transform
equations (33) by writing

w=eMVEF(yt), v=eMVEGL), 1=1y/t (50)
where 7 is now of O(1). The equations satisfied by the functions F and ¢ are

_O°F 1 ds oF 9 ds 1l oF aF
e — = 3 —3m— 1
£t e +1i [ q —2A ]677 [(/\1 en dt+ 1)F+fG] t [ 1y 3 +t— T (51a)
-1 dso@ ds b oG oG
14 a—;aﬁ'[ﬁ’ <1+/\1—d—t)G]—t [ G —776;+t§] (510)

where terms of O(e1¥) have been neglected i in equations (51). To solve equations (51)
we expand F(y,t) and G(7,t) in powers of %, namely

F(y,t) = Fy(n)+t 2 F(n) + ..., (52a)
G, t) = Qo(n)+t2G, () + ..., (52b)

with ds/dt expanded via (34c¢).
At leading order we find that F, and G, satisfy the equations

(AT—eA ey + 1) Fy+fG, =0, (53a)
Fy—(1+A,¢y) Gy = 0. (63b)

Since A, is given by the cubic equation (39), it follows that
(AZ—eA co+ 1) (1+A,¢)+f=0 (54a)

and hence equations (53) are satisfied for any choice of F,, with G, given by
Gy =Fo/(1+A;¢c,). (540)
At O(t7%) we obtain the equations

(A3—eco A+ 1) F + G, = (2/\1—300)14’{), (55a)
Fi—(14+2¢p) Gy = 1+/\1 OG(’,, (55b)

where primes now denote differentiation with respect to #. Now the left-hand sides
of equations (55) are the same as (53) and hence the right-hand sides must satisfy a
compatibility requirement. This gives, on using (545),

[(2A; —é&cy) (14 A ¢y)2—co f1Fy = 0. (56a)
Using (54 a), this equation becomes
[Beg A2 —2(eci—1) A24cy(1—¢)] Fy = 0, (56b)
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which is again satisfied for any choice of F'y, since A, satisfies the equal roots condition
(41A)i; O(t™') we obtain the equations
(AT—eA ¢+ 1) Fy+fGy = (ec; Ay —3) Fy—gnFo— Fg+ (22, —ec,) F, (57a)
Fy—(1+2,¢9) Gy = (A ¢, —3) Go— 390y — ¢y U1} (57b)
Equations (57) give a solvability condition, which, in turn, leads to an equation for
Fy(n), on using (54a) and (56b). We find that F| satisfies the equation

Fi+3anF,—bF, = 0, (58a)

2
where a=(1+/\100)((1+/\100)+f) ,

(L+A ¢+ f

which is positive and

(1425 ¢) [GHeA ¢y) (1+ Ay ¢0)° +f(5+ A, ¢y)]
(I+ A ¢+ f .

Equation (58a) has to be solved subject to

b=

Fy—~0 as n—-o0 (58b)
and, on matching with the solution for y > 1, that

Ape Ao (f+ (14 2A,¢)%) 3 4 ]
OL(1+ Ay o) + B f/(1+ A0

FONAO[W'*' (68¢)

as 9 —> 0.
Equation (58a) has a solution satisfying (58¢) in terms of confluent hypergeometric
functions (Slater 1960) as

Fy=Ayne;® " Fy(14+b/a;3;3an?). (59a)
This solution does not satisfy condition (58b) unless the series given by the confluent
hypergeometric function in (59a) terminates. It does so when 1+b/a =0 or a
negative integer. However, in the latter case, the resulting polynomial in #* has zeros
at finite values of  and consequently gives a range of 4 over which F| is negative,

violating the condition that u(x,t) = 0 for = 0, t = 0. Thus we must have a+b =
0, and, on re-arranging we obtain

o = 3 (f+a +A.6)°)
' 27, (f+e(1+2A,¢0))’
Fy=Ayye o/, (59¢)
Note that (5956) reduces to the value for the Fisher-Kolmogorov wave when f=0
(Branson 1983).

This completes the discussion of the asymptotic wave speed and we now consider
the structure of the travelling wave.

(59b)

(b) Travelling wave structure

Having ascertained the asymptotic wave speed ¢, in the way described above, we
can return to the solution of equations (35) for the permanent form travelling wave
solution of equation (6). However, to complete this discussion we need the boundary
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condition to be satisfied at the rear of the wave, i.e. as y ~—00. To examine this we
put
uy=u+U, vy=u+V (60)

and substitute into equations (35). On retaining only the leading order terms for U
and V small, we obtain, after eliminating V, the equation for U

d2U d2U dU

_ 2__ —_— e = 1
Co dy3+(8c° 1)dy2+coTr dy+Au 0, (61a)
where Tr = —e—(2fqug/(q+us)?) + (1 —2uy)

(q+us)®  (g+uy)

are the trace and determinant respectively of the jacobian of the well-stirred system
evaluated at the stationary state (95). On looking for a solution of this ordinary
differential equation proportional to e*¥(u > 0), we obtain the characteristic equation

Glp) = e +(eci— 1) ey Tryu+ 4 =0 (610)

From our knowledge of the well-stirred system, 4 > 0 for all parameter values,
while 7' changes sign (from negative to positive) as the stationary state (96) changes
stability (form stable to unstable) at the points of Hopf bifurcation. Note also, from
the wave speed selection as given by equations (39) and (41), we must have ecg > 1.

Now consider the solution of equation (61b). Since 4 > 0 this equation will always
have one (physically unacceptable) real negative root u = —pu, (say), u,> 0.
Moreover, if 7r > 0 (i.e. stationary state (9b) is temporally unstable) all the
coefficients are positive and there can be no real positive roots to equation (610).
Hence a necessary condition for the existence of a positive root is that stationary
state (9b) be stable (i.e. T'r < 0). We can show directly that at the points of Hopf
bifurcation (i.e. where 7 =0) G(x) has two turning points at 4 =0 (a local
minimum) and at p = p, = —2(ect—1)/3¢, <0 (a local maximum) with G(u,) >
G(0) > 0. Hence, as there can be no further turning points to this cubic, the other two
roots must form a complex conjugate pair of the form a+if (say). A consideration
of equation (61b) with 7 = 0 then shows that 2au, = a®+ 2. From this it follows
that, when 7' = 0, « > 0 and the roots have positive real part. Continuing with this,
we can determine the condition under which the equation G(x) =0 has purely
imaginary roots. We find this to be given by

A ="Tr(ecg—1) (62)

condition (62) requires 77 > 0. Finally, we note that when 7r < 0, G(x) has two
turning points at a positive (local minimum) and a negative (local maximum) value
of 4. Hence, in this case the other two roots must either be both real and positive or
be complex conjugates with positive real part. The above enables us to deduce that
when the stationary state (956) is temporally stable (i.e. 7' < 0), this solution can be
approached at the rear of the wave through exponentially small terms. (Note now
that focal behaviour does not violate (25) as us > 0.)

To see whether this steady state could indeed be left behind at the rear of the
propagating wave we have to consider the region near the boundary where z is of
O(1). In this region we need the values of 4 = u, and v = u, (in the limit as > c0) on
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The initiation and propagation of travelling waves 249

the boundary to adjust, on an O(1) length scale, to steady state u = v = u,. If this is
the case the behaviour of the solution is determined and is that shown in figure 3a,
b,e. In this boundary region

u=1ux), v=7ox). (63a)
Equation (6b) gives o(x) = %(x), with equation (6a) then becoming
@ +u(l—u)+fulq—u)/(g+u) =0 (63b)
subject to the boundary conditions that
w(0) = u,, T—>u, as x—>o00. (63¢)

Now primes denote differentiation with respect to x.

However, it is the behaviour of the solution as x — o0 that concerns us most. Here
we put @ = u,+U, where U is small for x large. Equation (63b) then gives, on
retaining only the leading order terms, the linear equation

U'—IU =0, (64a)
where I' = y/(q+u,)?, with

Y = Cug+ (g +f—Dui+ 2 +2fg—2q) u.— (1+f) ¢%), (64b)

where u, is given by (9b). For exponential decay we must have y > 0. It is
cumbersome to proceed with the examination of this condition for general values of
the parameters. However, we can exploit the forms for u, for ¢ small as given by (12).
The form for |1 —f| <€ 1 given by (13) is not needed as u, is temporally unstable in this
range. Using (12a) we find that, for f < 1,

y=(1=f)+2(1+2f+3f*) ¢+ 0(¢*) (65a)
and using (12b) that, for f> 1,

AU L,

Y=o ¢ +0(¢°). (65b)
It is clear that in both cases the condition y > 0 is satisfied and hence the (stable)
steady state u = v = u, can be left behind the wave, with this boundary region
having only a local effect and not altering the basic structure of the propagating
reaction—diffusion wave. However, this picture is not seen for f > 1 with ¢ sufficiently
small (figures 3¢, d) with there then not being a steady state left behind after the
front has passed. This point will be discussed further in the next section when we

consider the solution of the travelling wave equations for & small.

6. The travelling waves

Here we establish some properties of the permanent-form travelling wave
solutions satisfying the equation

d2u du (g—u)

S e, 2 - \g—u) _
dy2+6cody+u(1 u)+ﬂ)(q+u) 0, (66a)
dv
Coa;+u—1) —0, (66b)
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where y is the travelling coordinate y = x —¢, t and ¢, the constant wave speed. Ahead
of the wave we have
u,v—>0 as y— 0, (67a)

while behind the wave, if stationary state (9b) is stable,
U, v>uU; as Y- o0, (67b)

where u, is given by (9b). We limit our attention to the case ¢ < 1.
In particular, we derive the asymptotic structure of these waves when f <1,
/> 1 and when ¢ € 1. However, we start by deriving a general result.

Proposition. A permanent form travelling wave u(y), v(y) satesfies 0 < u(y) < 1 and
0<vy)<lon —o0 <y < 0.

Proof. From the results on the invariant set, u(x,t) = 0, v(x,t) = 0 for —0 <2 <
00, t = 0, and so we must have

u(y) =0, v(y)=0. (68)

Hence we need to show that u(y) <1 and v(y) <1on —o0 <y < oo forg<1.Itis
straightforward to show that u, <1 for ¢ < 1 for all f = 0. Now suppose that there
is at least one range of values of y for which «(y) > 1. Then there will be at least one
value y, (say) on this range at which u(y) will have a local maximum, with

uw(y,) > 1, w'(y) =0, '(y,) <O (69a)
Now from equation (66a) we obtain
W) = ulyy) (uly) = D +fr(yy) (ZEZ—;;Z) > 0. (690)
1

This gives a contradiction and hence we must have
O0<uly)<1l on —w<y<o0. (69¢)

For v(y), suppose again that v(y) > 1 for some range of y, then there will be a value
of y, y, (say) at which v(y) will have a local maximum with

v(ys) > 1, v'(yy) =0, v"(y,) <O. (70a)
However, from equation (665),
6o (Ya) = 0 = v(y,) —u(ys), (700)

which in turn implies that w(y,) > 1. This again leads to a contradiction. Hence we
must have
0<»y) <1 on —o0<y<c0. (70¢)

Note that this last result can be obtained directly from equation (666), which when
integrated subject to boundary conditions (67), gives

ey/cO 0
v(y) = j u(s) e~ ds (71)

Co Jy

Then, for any bound on w(y), say u(y) <M, —o0 <y < oo, we have via (71) that
v(y) <M, —o0 <y < 0.
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(a) The structure of the travelling waves for f <1
We look for a solution of equations (66) valid for small f, by expanding

w(ysf) = woly) +fu(y) + ..., (72a)
o(y;f) = voy) +fo.(y) + ... (72b)

and using the asymptotic expansions for the wave speed c, and stationary state u,
for small f derived previously, namely

2 1
CO_Z+(2+8)f+"" (73a)
(¢—1)
=14+"—=f+.... 73b
At leading order we obtain the equations
g + 2ug + ue(1 —uy) =0, (74a)
vy +3E(uy—v,) = 0 (74b)

(primes denoting differentiation with respect to the travelling coordinate y).
Equation (74 a) is the well known Fisher-Kolmogorov equation corresponding to the
minimum wave speed. It has a solution, with the properties that

(y+A4,)ev+... as y—o0, (75a)
uo(y) ~
1—-Bye+... as  y—>—o00, (75b)
where A, and B, are constants and x4 = 1/2—1. Equation (74b) yields the solution
vo(y) = 3¢ e%"yj e gy () ds. (76)
Yy
On considering this solution as |y| > co and using (75), we find that
0 as y— o0,
vo(y) = (77)
1 as y——o0.

Hence the solution of equations (74) satisfies all the required boundary conditions as
ly] = o0, to leading order.
At O(f) we obtain the linear equations

” ’ 8 ’ _u
W+ 20+ (1 — 2ug) uy =—(2+8)u0—008+u2;, (78a)
’ 8 /
vl+%8(u1_vl) = _2(2+8) /UO (78b)

to be solved subject to the boundary conditions that

1—q
ul,/l)l—>—<1+—q) as y—>—OO, (79a)
Uy, ;>0 as  y— 0.
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A solution of equations (78) can be obtained which is compatible with both boundary
conditions (79) and hence the expansion (72) is regular (at least to this order). Hence,
for small f, the solution is a regular perturbation to the fisher-Kolmogorov solution.
At the rear of the wave both w and v tend to their stable stationary states, i.e.

w,o~1—((1—=q)/(L+q)f+....
(b) The structure of the travelling wawves for f > 1

Here we use the asymptotic expansions for the wave speed ¢, and the stationary
state u, for large f, namely

co = (27/4e)ifi+ ..., (80a)
us=q+1/f)2g1—q)+.... (80b)
If we look for a solution of equations (66) for f > 1 by expanding in the form
1
uy:f) = uo(y)+fu1(y)+... ; (81a)
1
v(ysf) = vy + o)+ (810)

f

Substituting into equations (66) and equating terms in like powers of f gives simply
Uy =0y =q, u=uv;=2q(1—q), (81¢)

which is just expansion (80b) for u,. Hence the solution for f > 1 must be a singular

perturbation problem. Further consideration shows that the solution divides up into
two regions. There is a thick outer region, of thickness of O( 1), at the rear of the wave
and a thinner inner region, of thickness of O(f), at the front of the wave.

We consider first the outer region (y < 0) in which % and » are left unscaled, while
¥ is rescaled by

Y =fiy. (82)
At leading order we obtain the equations
1 dv
(27/4¢e) d)2+u0—vo =0, (83a)
Vo —uy)/ (g +uy) =0 (83b)

which yield the solutions
Uy =q, v, =q+Coexp[(4e/27)1Y], (84)
where C; is a constant which will be determined by the matching. Note that as

Y ——o00 the boundary conditions w,, v,—> u, is satisfied to leading order.
At O(f~') we obtain the equations

o1 —uy) —vyu, /2 = 0, (85a)
1 d
(27 /4e)t d?+u1 —v, =0, (85b)
with solutions
w, = 2Q(1 —q) (860/)

1+(Cy/q)exp[(4¢/27)1 Y]’

L] 4 iy
v, = 29(1—q) +exp[(de/27)} Y] [BO +20,(1—q) log(1 i ?};];)[LXZ[Z(ZL ; 2]7)% Y])] ,
70 5
860)
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where B, is a further constant. Again the boundary conditions as ¥ —o0 are satisfied
by (86).

The boundary conditions (u,v->0) at the front of the wave are not satisfied and a
further inner region is required in which this is achieved. In this region (of thickness
O(f71)) we rescale variables by writing

w=U, v=f1V, §=fiy, (87)

where U, V and 7 are all of O(1) in this region.
At leading order we obtain the equations

dV
(27/4¢) @+U 0, (88a)
dzU 1dU o (g—U) _
d‘2 &(27/4¢) —d—_+V( +U)_O (88b)
to be solved subject to
U-0, V-0 as y—>o0. (88¢)

Now the solution in this region as §— — 0o has to match with the solution in the outer
region as ¥ — 0. From (84) we have v ~ Cy+¢+... as Y -0, which is of O(1) and thus
will not match with v in the inner region (where v is of O(f ~3)) unless we take

Cy=—q.
This determines the constant C,, and with this we then have from (84) and (86) that
U~ q—[227/4efiq(1 =) 1 H+.., (90a)
V ~—q(4e/27)i 5+ ... (90b)

as §—>—00.
Equation (88a) can be integrated to give

1 0
V(7) = (4¢/27)F f U(s)ds. (91)

Yy

The solution in this inner region then requires the solution of equation (88b4) subject
to boundary conditions (88¢) and (90). We are unable to proceed any further
analytically, but the structure of the reactlon—dlffusmn travelling wave for f large is
now clear. There is an outer region of thickness O( f1) in which u remains constant to
leading order and in which v starts by being of O(1) at the rear becoming smaller, of
O(f~%) at the front. There is then a much thinner inner region, of thickness O(f =), in
which u is of O(1) and v is small of O(f %), and in which the conditions ahead of the
wave are attained.

(¢) The structure of the travelling wave for e < 1
Finally, we look for a solution of equation (66) valid for ¢ < 1. We start by
expanding
wly; ) = uo(y) +eus(y) + ..., (92a)
v(y;¢) = vo(y) tevy(y) +..., (920)
Phil. Trans. R. Soc. Lond. A (1993)
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and using the asymptotic expansion for the wave speed ¢, for small &, namely
co = (2/e) +3f+0(e). (92¢)

Note that stationary state (96) does not depend on e.
At leading order we obtain the equations

” ’ (q—‘u )
wg + 2ug + ug(1—u,) + fo, (q+u2) =0, (93a)

v, = 0. (93b)

Equation (936) together with the boundary conditions at the front of the wave gives
v, = 0, with equation (93a) then becoming the equation for the Fisher—Kolmogorov
wave with minimum speed. The behaviour of the solution of equation (93a) as |y| —
oo is given by (75). Note that the boundary conditions u,—0, v,—~0 as y— oo are
satisfied. Also u, 1 as y —>— 00 and the boundary conditions at the rear of the wave
are not satisfied. Hence we have a singular perturbation problem and to obtain more
information about the non-uniformity in expansions (92, b) we need to consider the
equations for the terms of O(e).
At O(e), we obtain the equations

uy 4 2ug + (1 —2u,) u, +fg—;—z—0;vl = —1fug, (94a)
0
2v1+u, = 0. (940)
Equation (94b) has the solution
1 o0
v, = Ef uo(s) ds, (94c¢)
v

which gives v; -0 as y - o0 (satisfying the boundary condition at the wave front) and
has v, ~ —3y+... as y—>—o00. On considering equation (94a) as y > 00, we note that
u, — 0 again satisfying the boundary condition at the front of the wave. However, as
y—>— 00 equation (94a) gives

fd—q

Hence expansion (92a) becomes non-uniform as ¢ —~ — 00 when ¢gly| is of O(1), i.e. when
lyl is of O(¢™!) > 1 with then both « and » being of O(1).

This suggests that we need a further region, of thickness O(e™?), at the rear of the
wave in which we introduce the stretched variable ¥ = ¢y (¥ < 0) and leave « and v
unscaled. Equations (66) become

d2u

gza?z—+azco%,+u(l—u)+fv%;—3;=0, (95a)

8(50%+u——v = 0. (95b)
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With again ¢, expanded for small ¢ via (92c¢). The leading order terms (u,,v,) in an
expansion in powers of ¢ then satisfy the equations

dv,

25— =0, (96a)
U,

uo(1— o) + 10, q+u0; =0. (96b)
0

Equations (96) are to be solved subject to the boundary conditions that
U, Vy—>Us a8 Y —>—00, 97a)

and, on matching with the inner solution, that

(1-9) %
Uy~ 1+1% —Y 97b
- v~ —3Y +. (97¢)
as Y =0,
On rearranging equation (96b) we obtain
dY 2 (2u —(1+2q)u0+2q(1 q)u +q¢?)’
Ed_ 1u0(u0_us) (u0+7’_l’s) (98b)

dy 2 Sflug—q) ’

where @, = 3(v/[(f+q—1)2+4q9(1 +f)]—1+f+q) > 0. It is straightforward to show
that 1 > u, > ¢q for f> 0. Then, since (98a) gives

dug  (1—ug) (1+1u)

T 2+g

at u, = 1, a monotone increasing solution of equation (98a) can be determined which
satisfies the boundary conditions (97) (with a corresponding monotone decreasing
solution of equation (98b) being found), provided the denominator in equation (98a)
is non-zero over the range u, < u, < 1.

Hence we need to consider the function

D =2u*—(14+2¢9)u*+2¢(1 —q)u+¢* (99)
over the range us <u < 1. Atu=1,D =1—¢*> 0. Also,
dD/du = 2(u—q) (Bu— (1 —q)) (100 @)

giving turning points at
Uy =q, uy=g1—q). (100b)

First consider the case g > 1. Here u, > u, and a consideration of the second
derivative of D at u = u, and u = u, shows that u, = ¢ < ug is a local minimum and
u, a local maximum. Then since D(q) = 2¢*(1 —q) > 0 it follows that in this case D >
0 for all w in the range u, < u < 1, and the required solution to equation (98a) can
be found. For ¢ =1, u, =u, =% D =2(u—1)%+5>0 for all v in u; <% <1 and
again no problem is encountered in solving equation (98a).
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Next consider the case ¢ < 3. Here u, < u, with %, now being a local maximum and
U, a local minimum, with

D(uy) = 55(10¢°> +6¢*+ 129 —1). (101)

Then clearly if D(u,) > 0, D(u) > 0 for all w > 0 and, in particular, for all » on u, <
u < 1. If however, D(u,) <0 further considerations are necessary. The equation
D(u,) = 0 has to be solved numerically, giving the single positive root at ¢ = ¢, =
0.079732 (note this is effectively the same value as g, given in (11), the value of ¢
above which the well-stirred system is non-oscillatory). Hence, for ¢ > ¢,, D(u) > 0
for all u in the range u, < u < 1 and equation (98a) is solvable.

For q <gq, D(u,) <0 and, since D(u) is monotone increasing on u, < u < 1,
equation (99) will have a root at u = u, (say) where u, = (1 —¢q) < u, < 1. Hence for
D(u) > 0 on u, <u <1, we require u, < ug or, equivalently, D(u,) > 0. Otherwise
equation (99) will have a root on 4y < 4 < 1 and the problem given by equations (98)
and boundary condition (97) will not have a solution. It is somewhat intractable to
proceed with the condition D(ug) > 0 for general values of the parameters. However,
we can exploit the forms for u, valid for small ¢ given previously, (note that g, is itself
a small number). Using (12a) we find that, for f < 1,

D(uy) = (1—=f)2(1=2f)+2f(5-Tf)q+.... (102)

From (102), D(ug) > 0 for f < &, to leading order, which is precisely the condition (15)
that u, is a stable stationary state. However, for f > 1, u is of O(q) which will be small
in relation to u, (at which point D < 0) and hence equation (99) will have zeros on
u, <u <l

We are now in a position to interpret the structure of the solution of equations (66)
for ¢ € 1. For ¢ > q, a solution is always possible in which there is a region of
thickness O(1) at the front of the wave where w is O(1) and v is small, of O(¢). At the
rear of this region is a much thicker region, of extent of O(¢™"), in which u and v are
both of O(1) and at the rear of which the uniform steady state u = v = ug is attained.
This picture is the same for ¢ < ¢,, provided that f < 3+ O(g), i.e. the stationary state
at the rear of the wave is stable. However, for f > 1 there is no such structure, even
when wu is stable. This is borne out by the numerical solutions where we saw, for
f=3.0 and ¢ = 0.05, a series of propagating pulses initiated at the boundary (figure
3¢, d).

7. Discussion

In this paper we have considered the structure and speed of constant velocity
wavefront solutions for a one dimensional system with BZ kinetics. Initially, the
system is assembled at an unstable steady state (v = v = 0). The wave is initiated
and sustained by imposing a constant value for one of the reactant species X at the
origin. The species Z is immobilized in the reaction zone. The kinetic parameters ¢,
¢ and f have been varied to cover a range of cases, such that the corresponding non-
zero steady state of the well-stirred system may be either stable or unstable. With
an unstable non-zero state, the system displays a stable limit cycle in the ordinary
differential equation (0DE) case. For our reaction—diffusion problem, such parameters
set up an essentially phase-wave behind the front: at any given point, the
concentrations u and v follow time-periodic variations that follow closely the
corresponding oscillations for the well-stirred system.

If the steady state behind the wave is sufficiently stable, the reaction—diffusion
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problem evolves to this solution, with a thin transition region close to the origin to
satisfy the boundary condition if u, # u,. For excitable systems, however, and if the
boundary condition imposes a sufficiently high concentration u,, the stable steady
state is not attained after the initial front. A supercritical disturbance is realized
before u approaches u, and a second reaction pulse is initiated. Successive repetitions
lead to the establishment of a periodic spatiotemporal response even though the
corresponding ODE has a stable steady state: a periodic wave train has emerged in
this system with a constant imposed concentration at x = 0.
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